Number Game
Practice
3 (2 votes)
Mathematics
Hard
Fast fourier transform
Linear algebra
Problem
20% Success 89 Attempts 50 Points 4s Time Limit 256MB Memory 1024 KB Max Code
You are given \(N+1\) distinct positive integers \(A_1,A_2,......,A_{N+1}\) and a positive integer \(M\). A polynomial of degree \(N\) is defined as follows:
\(f(x)= P_1x^N + P_2x^{N-1} + ……..+ P_Nx + P_{N+1} \)
such that following conditions hold true:
-
\(f(A_i) = A_i^{N+1} \ \forall i\in [1,N+1]\)
-
\(P_1 > 0\)
-
\(P_1,P_2,.....,P_{N+1}\) are integers
A new polynomial is defined as
\(S(x) = X_1x^N + X_2x^{N-1} + ……..+ X_Nx + X_{N+1} \)
Such that \(X_i = |P_i|\%M \ \ \forall i\in [1,N+1]\) and \(X_1,X_2,.......,X_{N+1}\) are integers.
Evaluate \(S(0)\%M, S(1)\%M ,…….S(M-1)\%M\) .
Input format
- First line: Two space separated integers \(N\) and \(M\)
- Second line: \(N+1\) space separated integers \(A_1,A_2,......,A_{N+1}\)
Output format
- Output \(M\) space-separated integers \(S(0)\%M, S(1)\%M ,…….S(M-1)\%M\)
Constraints
\(1 \le N,M, A_i \le 10^5\)
\(M\) is prime
Subtasks
- For 20 Points: \(1 \le N,M, A_i \le 1000\)
- For 80 Points: Original constraints
Submissions
Please login to view your submissions
Similar Problems
Points:50
9 votes
Tags:
Linear AlgebraHardFast Fourier transformTreeMathematics
Points:50
7 votes
Tags:
ArraysLinear AlgebraImplementationFast Fourier transformCombinatoricsFourier TransformationsModular exponentiationMathematicsModulo arithmeticMath
Points:50
Tags:
Linear AlgebrafftFast Fourier transformHardMathematics
Editorial